行业动态

当前位置:首页 >> 行业动态

用于龙门架行走机构的双驱智能同步方法

来源:本站 时间:2021-02-18 10:25:38 浏览:59

龙门架行走机构通常应用于工业机器人,例如焊接机器人、激光切割机器人等,龙门架行走机构包括两条平行的纵梁以及跨设在两条纵梁上的行走横梁,行走横梁的两端分别设有构造相同的第一驱动机构和第二驱动机构,第一驱动机构和第二驱动机构能够驱动行走横梁在两条纵梁上行走,工业机器人安装在行走横梁上,跟随行走横梁行走。

虽然第一驱动机构和第二驱动机构采用相同的传动装置和控制方法,但往往因为机械加工制造误差及第一驱动机构和第二驱动机构之间的动态耦合导致载荷波动,极易造成驱动系统失衡,引发第一驱动机构和第二驱动机构不同步现象,影响加工精度。

第一驱动机构和第二驱动机构的同步控制(下称双驱同步控制),不仅要保证单轴(驱动机构通常为电机,通过电机输出轴输出动力)的准确控制,使单轴具备较快的跟随响应性和较好的抗干扰性,又要实现双轴之间的同步配合,其所需要的高精度和高稳定性也相应对双驱系统的同步性能及其控制技术提出了更高的要求。由于双驱同步控制技术还未完全形成系统的理论作为研究依据,因此对于双驱同步控制的同步性能的研究有意义重大。

在双驱同步控制系统中,同步是指第一驱动机构和第二驱动机构的运动速度保持一致。传统的双驱同步控制主要采用机械总轴同步的方式,即采用一台大功率主电机驱动机械主轴,通过同步带、齿轮等传动机构将主电机的运动分别传递给两个同步轴,这种同步方式一般占用较大空间,并且齿轮传动比等机械参数的波动会引起双轴传动比、转速的变化,产生由机械间隙带来的不确定性误差,导致同步控制精度不高,这些缺陷限制了机械同步方式的进一步应用。

经过国内外学者对同步控制的长期研究及伺服控制技术的不断发展,人们逐渐发现电气同步控制方式不仅不会受到数控装备使用空间的限制,由机械间隙带来的不确定性误差也更小,相对于传统的机械同步方式有着得天独厚的优势,能够实现精度更高,同步性更好的控制。目前的双驱同步控制策略主要分为三种结构方式:并行控制、主从控制和交叉耦合控制。

并行控制系统的架构如图1所示,它是一种相对简单的双驱同步控制系统,采用结构和参数完全相同的两套平行伺服驱动轴。两轴之间没有任何交互和影响,属于同步开环控制系统,存在一定的累积误差和同步误差,一般只适用于精度要求不高的场合。

主从控制系统的架构如图2所示,它采用主动轴带动从动轴的形式,即主动轴的输出作为从动轴的输入,在这种控制方式下当主动轴受到扰动和影响时,可以反映到从动轴上,从动轴会进行相应的跟随及调整来保持一定的同步性,但是也会因为伺服系统的延时形成轴的跟踪误差。反之,从动轴受到扰动和影响时反映不到主动轴上,主动轴不能进行相应的跟随及调整,两轴之间会产生同步误差,在应用上有一定的局限性。

交叉耦合控制系统的架构如图3所示,它是将各轴输入的位置差和速度差作为反馈信号,系统再进行相应的误差补偿,避免了主从控制方式下从轴输入延迟、扰动不能反馈到主轴上的缺点,同步性能更好。

以上双驱同步控制策略均为传统理念,机械化思维,重复纠错造成硬件资源浪费,高速同步效果不理想。对于智能机器时代已不太适用,需要一种更好的学习性同步策略才能适应智能装备产业升级。

发明内容

本发明的目的在于提供一种用于龙门架行走机构的双驱智能同步方法,能够控制双驱高速高精度同步。

为解决上述技术问题,本发明采用的一个技术方案是:提供一种用于龙门架行走机构的双驱智能同步方法,所述龙门架行走机构包括两条平行的纵梁以及跨设在两条纵梁上的行走横梁,所述行走横梁的两端分别设有构造相同的第一驱动机构和第二驱动机构,所述第一驱动机构和第二驱动机构能够驱动行走横梁在两条纵梁上行走,其特征在于,所述双驱智能同步方法包括:

S1:同时控制第一驱动机构和第二驱动机构以预设速度驱动行走横梁行走预定行程,实时测量行走横梁两端实际行程的位置偏差。

S2:重复步骤S1,判断第一次的位置偏差与第二次的位置偏差之间的差值是否大于设定值,如果否,则进行步骤S3。

S3:根据第二次的位置偏差计算位置偏差曲线。

S4:判断位置偏差曲线的条数是否达到3条,如果是,则进行步骤S5,如果否,则以预定速度增量增大所述预设速度,并重复进行一轮步骤S1至S3。

S5:根据3条位置偏差曲线计算平均位置偏差曲线,计算公式为:

ΔF={[F(x3)-F(x2)]/ΔV+[F(x2)-F(x1)]/ΔV}/2

F(X)=V×(ΔF/ΔV)

其中,ΔV为所述预定速度增量,F(x1)为第一轮测量位置偏差后得到的位置偏差曲线,F(x2)为第二轮测量位置偏差后得到的位置偏差曲线,F(x3)为第三轮测量位置偏差后得到的位置偏差曲线,F(X)为平均位置偏差曲线,V为指令速度,其大于第三轮测量位置偏差时的预设速度。

S6:控制第一驱动机构驱动行走横梁行走预定时间,实时测量行走横梁两端实际行程的追踪超差。

S7:重复进行两轮步骤S6,根据三轮测量到的追踪超差计算第一驱动机构的速度变化曲线,计算公式为:

Δt=(t3-t2+t2-t1)/2

r1=(l3-l2+l2-l1)/Δt

f(v1)=M×V×F(X)/r1

其中,t1为第一轮的预设时间,t2为第二轮的预设时间,t3为第三轮的预设时间,r1为第一驱动机构的追踪衰减震荡率,l1为第一轮的追踪超差,l2为第二轮的追踪超差,l3为第三轮的追踪超差,M为同步系数,f(v1)为第一驱动机构的速度变化曲线。

S8:控制第二驱动机构驱动行走横梁行走预设时间,实时测量行走横梁两端实际行程的追踪超差。

S9:重复进行两轮步骤S8,根据三轮测量到的追踪超差计算第二驱动机构的速度变化曲线,计算公式为:

Δt=(t3-t2+t2-t1)/2

r2=(l3-l2+l2-l1)/Δt

f(v2)=M×V×F(X)/r2

其中,r2为第二驱动机构的追踪衰减震荡率,f(v2)为第二驱动机构的速度变化曲线。

其中,对于不同速度,两个驱动机构的衰减震荡曲线是不一样的。因此,需进行三次主从控制行走采样,每次的行走速度递增,以此计算出追踪衰减震荡率。

S10:根据第一驱动机构的速度变化曲线和第二驱动机构的速度变化曲线计算平均速度变化曲线,计算公式为:

f(v)={f(v1)+f(v2)}/2。

S11:根据平均速度变化曲线计算第一驱动机构和第二驱动机构的同步动态速度曲线,计算公式为:

F(v)=μf(v)

其中,F(v)为同步动态速度曲线,μ为同步精度差比。

优选的,所述步骤S2还包括:如果是,则进行步骤S12;

S12:重复步骤S1,直至第一次的位置偏差与第二次的位置偏差之间的差值小于设定值为止。

区别于现有技术的情况,本发明的有益效果是:通过模拟人的认路过程,利用辨识记忆,实现高速高精度双驱同步控制,摒弃了重复闭环、追踪、交叉耦合等复杂过程,使控制更为简便。

附图说明

图1是并行控制系统的架构图;

图2是主从控制系统的架构图。

图3是交叉耦合控制系统的架构图。

图4是本发明实施例提供的用于龙门架行走机构的双驱智能同步方法的流程示意图。

具体实施方式

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

参阅图4,本发明实施例中,龙门架行走机构包括两条平行的纵梁以及跨设在两条纵梁上的行走横梁,行走横梁的两端分别设有构造相同的第一驱动机构和第二驱动机构,第一驱动机构和第二驱动机构能够驱动行走横梁在两条纵梁上行走,本实施例的双驱智能同步方法包括以下步骤:

S1:同时控制第一驱动机构和第二驱动机构以预设速度驱动行走横梁行走预定行程,实时测量行走横梁两端实际行程的位置偏差;

S2:重复步骤S1,判断第一次的位置偏差与第二次的位置偏差之间的差值是否大于设定值,如果否,则进行步骤S3;

S3:根据第二次的位置偏差计算位置偏差曲线;

S4:判断位置偏差曲线的条数是否达到3条,如果是,则进行步骤S5,如果否,则以预定速度增量增大所述预设速度,并重复进行一轮步骤S1至S3;

S5:根据3条位置偏差曲线计算平均位置偏差曲线,计算公式为:

ΔF={[F(x3)-F(x2)]/ΔV+[F(x2)-F(x1)]/ΔV}/2

F(X)=V×(ΔF/ΔV)

其中,ΔV为所述预定速度增量,F(x1)为第一轮测量位置偏差后得到的位置偏差曲线,F(x2)为第二轮测量位置偏差后得到的位置偏差曲线,F(x3)为第三轮测量位置偏差后得到的位置偏差曲线,F(X)为平均位置偏差曲线,V为指令速度,其大于第三轮测量位置偏差时的预设速度;

S6:控制第一驱动机构驱动行走横梁行走预定时间,实时测量行走横梁两端实际行程的追踪超差;

S7:重复进行两轮步骤S6,根据三轮测量到的追踪超差计算第一驱动机构的速度变化曲线,计算公式为:

Δt=(t3-t2+t2-t1)/2

r1=(l3-l2+l2-l1)/Δt

f(v1)=M×V×F(X)/r1

其中,t1为第一轮的预设时间,t2为第二轮的预设时间,t3为第三轮的预设时间,r1为第一驱动机构的追踪衰减震荡率,l1为第一轮的追踪超差,l2为第二轮的追踪超差,l3为第三轮的追踪超差,M为同步系数,f(v1)为第一驱动机构的速度变化曲线。

同步系数M的单位是1/S,由机械结构惯性决定,由实验获得。

S8:控制第二驱动机构驱动行走横梁行走预设时间,实时测量行走横梁两端实际行程的追踪超差;

S9:重复进行两轮步骤S8,根据三轮测量到的追踪超差计算第二驱动机构的速度变化曲线,计算公式为:

Δt=(t3-t2+t2-t1)/2

r2=(l3-l2+l2-l1)/Δt

f(v2)=M×V×F(X)/r2

其中,r2为第二驱动机构的追踪衰减震荡率,f(v2)为第二驱动机构的速度变化曲线;

S10:根据第一驱动机构的速度变化曲线和第二驱动机构的速度变化曲线计算平均速度变化曲线,计算公式为:

f(v)={f(v1)+f(v2)}/2

S11:根据平均速度变化曲线计算第一驱动机构和第二驱动机构的同步动态速度曲线,计算公式为:

F(v)=μf(v)

其中,F(v)为同步动态速度曲线,μ为同步精度差比。

同步精度差比μ是线性比例系数,决定动态速度变化曲线整体偏移情况,由实测同步精度中间值决定,实验获得。

通过同步动态速度曲线F(v)来控制第一驱动机构和第二驱动机构的运动速度,可以将第一驱动机构和第二驱动机构的运动精度逼近,实现盲走场景。

在本实施例中,步骤S2还包括:如果是,则进行步骤S12;

S12:重复步骤S1,直至第一次的位置偏差与第二次的位置偏差之间的差值小于设定值为止。

通过上述方式,本发明实施例的用于龙门架行走机构的双驱智能同步方法先控制双驱同步行走,实测位置偏差,实现认路过程;再控制双驱各自为主进行追踪行走,实测追踪衰减震荡和各自的速度变化曲线,实现熟悉和记忆过程;***后得到同步动态速度曲线可以实现盲走场景,做到高速高精度同步。

以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。